Progress of Cryogenics and Isotopes Separation

Newsflash

The National Conference with international participation on New Cryogenic and Isotope Technologies for Energy and Environment - EnergEn 2018 is organized by the National Research-Development Institute for Cryogenic and Isotopic Technologies - ICSI Rm. Valcea with the scientific participation of the University of Pitesti and the University of Craiova and will be held at Baile Govora, in 2018.

CARBON NANOFIBERS PT-EMBEDDED MANUFACTURED THROUGH ELECTROSPINNING Print

 

CARBON NANOFIBERS PT-EMBEDDED MANUFACTURED THROUGH ELECTROSPINNING

Radu Dorin Andrei*, Adriana Marinoiu, Elena Marin, Amalia Soare, Stanica Enache, Elena Carcadea

National Research and Development Institute for Cryogenics and Isotopic Technologies – ICSI Rm. Valcea, 4 Uzinei Street, P.O. Box Râureni 7, 240050, Rm. Valcea, Romania

 

ABSTRACT

Electrospinning is a widely used method for the production of electrospun fibers, using a strong electrostatic field to produce polymeric nanofibers with the diameter from 2 nm to micrometers scale from a polymer solution. The morphology of the nanofibers is affected by some variable, like solution characteristics, operation factors and environmental conditions. For the carbon nanofibers production, the best precursors are represented by the PAN-based polymer. In order to improve the electron conductivity and to prevent the catalyst degradation by corrosion we introduced Pt nanoparticles in the carbon nanofibers structure. In this study we synthesized electrospun fibers with different concentrations of Pt, our purpose being to obtain Pt/carbon nanofibers, necessary for Proton Exchange Membrane Fuel Cell components. The electrospun fibers obtained were submitted to carbonization at 1400°C, in order to achieve nanofibers with more than 96% of carbon atoms and with a diameter between 200-600 nm The physicochemical properties reveal that the addition of Pt atoms improves the textural characteristic, increasing the quantity of Pt precursor raise the specific surface area, from 48.55 to 204.973 m2.g-1 and the pores volume, from 0.012 to 0.303 mL.g-1. The presence of Pt atoms in the carbon nanofibers structure is proved by the characteristic diffraction peaks at 39.8°, 46.5°, 68°, 82.5° and 86.5° corresponding to crystalline phase of Pt. In the same time, the Raman spectra presents characteristic features with an important change in the ID/IG intensity ration value from supra-unitary for disordered C to sub-unitary in ordered Pt/C_1.

Keywords: Electrospinning, carbon nanofibers, Pt nanoparticles.